Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-[2-(4-Bromobenzoyl)ethyl]isopropylaminium chloride

Abdullah Aydın,^a* Mehmet Akkurt,^b Halise Inci Gul,^c Ebru Mete^d and Ertan Sahin^d

^aDepartment of Science Education, Faculty of Education, Kastamonu University, 37200 Kastamonu, Turkey, ^bDepartment of Physics, Faculty of Sciences, Ercives University, 38039 Kayseri, Turkey, ^cDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Atatürk University, 25240 Erzurum, Turkey, and ^dDepartment of Chemistry, Faculty of Sciences, Atatürk University, 25240 Erzurum, Turkey Correspondence e-mail: aaydin@kastamonu.edu.tr

Received 17 November 2011; accepted 6 December 2011

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.009 Å; R factor = 0.076; wR factor = 0.181; data-to-parameter ratio = 18.5.

The crystal structure of the title compound, C₁₂H₁₇BrNO⁺.-Cl⁻, is stabilized by N-H···Cl and C-H···O hydrogen bonds, forming a three-dimensional network. The interactions framework is completed by $C-H\cdots\pi$ contacts between a methylene group and the benzene ring of a symmetry-related molecule.

Related literature

For details of the pharmacological effects of Mannich bases and for the synthesis, see: Dimmock & Kumar (1997); Gul, Gul, et al. (2005); Gul, Sahin et al. (2005); Gul et al. (2007); Mete et al. (2011); Kucukoglu et al. (2011); Canturk et al. (2008); Chen et al. (1991); Suleyman et al. (2007). For bondlength data, see: Allen et al. (1987).

Experimental

Crystal data

C12H17BrNO+·Cl- $M_r = 306.62$ Tetragonal, $P4_2/n$ a = 19.7122 (4) Å c = 7.1738 (2) Å V = 2787.53 (11) Å³

Data collection

Rigaku R-AXIS RAPID-S diffractometer Absorption correction: multi-scan (Blessing, 1995) $T_{\min} = 0.632, T_{\max} = 0.709$

Z = 8Mo $K\alpha$ radiation $\mu = 3.12 \text{ mm}^-$ T = 294 K0.15 \times 0.13 \times 0.11 mm

50060 measured reflections 2836 independent reflections 1617 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.151$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.076$	H atoms treated by a mixture of
$wR(F^2) = 0.181$	independent and constrained
S = 1.07	refinement
2836 reflections	$\Delta \rho_{\rm max} = 0.67 \text{ e } \text{\AA}^{-3}$
153 parameters	$\Delta \rho_{\rm min} = -0.81 \text{ e } \text{\AA}^{-3}$
2 restraints	

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid o	f the benze	ene ring
-----------------------	-------------	----------

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - HN2 \cdots Cl1 N1 - HN1 \cdots Cl1^{i} Cl2 - H12B \cdots O1^{ii} C9 - H9B \cdots Cg1^{iii}$	0.86 (4) 0.86 (6) 0.96 0.97	2.26 (4) 2.27 (6) 2.60 3.00	3.102 (4) 3.133 (5) 3.378 (7) 3.943 (6)	166 (5) 177 (9) 139 164
Symmetry codes: -x + 1, -y, -z + 1.	(i) $-y + \frac{1}{2}, x - \frac{1}{2}$	$-1, -z + \frac{3}{2};$ (ii) $-x + 1, -y,$	-z + 2; (iii)

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors are indebted to the Department of Chemistry, Atatürk University, Erzurum, Turkey, for use of the X-ray diffractometer purchased under grant No. 2003/219 of the University Research Fund.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2400).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Canturk, P., Kucukoglu, K., Topcu, Z., Gul, M. & Gul, H. I. (2008). Arzneim. Forsch. 58, 686-691.
- Chen, H. T., Jing, Y. K., Ji, Z. Z. & Zhang, B. F. (1991). Yaoxue Xuebao, 26, 183-192.
- Dimmock, J. R. & Kumar, P. (1997). Curr. Med. Chem. 4, 1-22.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Gul, M., Gul, H. I., Das, U. & Hanninen, O. (2005). Arzneim. Forsch. 55, 332-337.
- Gul, H. I., Sahin, F., Gul, M., Ozturk, S. & Yerdelen, K. O. (2005). Arch. Pharm. 338, 335-338.
- Gul, H. I., Yerdelen, K. O., Gul, M., Das, U., Pandit, B., Li, P.-K., Secen, H. & Sahin, F. (2007). Arch. Pharm. 340, 195-201.
- Kucukoglu, K., Gul, M., Atalay, M., Mete, E., Kazaz, C., Hanninen, O. & Gul, H. I. (2011). Arzneim. Forsch. 61, 366-371.
- Mete, E., Gul, H. I., Cetin-Atalay, R., Das, U., Sahin, E., Gul, M., Kazaz, C. & Dimmock, J. R. (2011). Arch. Pharm. Chem. Life Sci. 11, 333-339.

Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Suleyman, H., Gul, H. I., Gul, M., Alkan, M. & Gocer, F. (2007). Biol. Pharm. Bull. 30, 63-67.

supplementary materials

Acta Cryst. (2012). E68, o71 [doi:10.1107/S1600536811052640]

N-[2-(4-Bromobenzoyl)ethyl]isopropylaminium chloride

A. Aydin, M. Akkurt, H. I. Gul, E. Mete and E. Sahin

Comment

Mannich bases are generally formed by the reaction between formaldehyde, a secondary amine and a compound containing reactive hydrogen atoms. On occasion, aldehydes other than formaldehyde may be employed and the secondary amine may be replaced by ammonia and primary amines. This process is known as the Mannich reaction (Dimmock & Kumar, 1997).

Mannich bases display varied biological activities such as antimicrobial (Gul, Sahin, *et al.*, 2005), cytotoxic (Gul, Gul *et al.*, 2005; Gul *et al.*, 2007; Mete *et al.*, 2011; Kucukoglu *et al.*, 2011), anticancer (Dimmock & Kumar, 1997; Chen *et al.*, 1991), anti-inflammatory (Suleyman *et al.*, 2007), and DNA topoisomerase I inhibiting properties (Canturk *et al.*, 2008).

A Mannich base having at least one hydrogen atom at the β position of amine group can undergo a deamination process to generate an α,β -unsaturated ketone moiety.

In the molecule of the tile compound (Fig. 1), the bond lengths are within normal ranges (Allen *et al.*, 1987), as well as bond angles.

In the crystal structure, molecules are linked *via* intermolecular N—H···Cl and C—H···O hydrogen bonds (Table 1, Fig. 2), forming a three dimensional network. Furthermore, a C—H··· π interaction (Table 1) contributes to the stabilization of the crystal packing.

Experimental

A mixture of the appropriate ketone (50 mmol), *para*-formaldehyde (50 mmol), and *iso*-propylamine hydrochloride (27 mmol) was heated in an oil bath at 403 K. The reaction vessel was then removed from the oil bath and when the temperature of the mixture dropped to 338 K, ethyl acetate (40–80 ml) was added. The mixture was stirred at room temperature for 24 h. and the resulting precipitates were then collected and the Mannich base (I) was passed through a column of silica gel 60 (70–230 mesh) using methanol as eluent. After evaporation of the solvent, the product was recrystallized from methanol. *M*.p.: 447–449 K. Yield: 38%. ¹H-NMR (CDCl₃) δ 1.49 (d, *J* = 6.8 Hz, 6H, CH(CH₃)₂), 3.34–3.38 (m, 3H, CH(CH₃)₂ and 2 *x* H-2), 3.73 (t, *J* = 7.3 Hz, 2H, 2 *x* H-3), 7.50 (d, *J* = 8.4 Hz, 2H, H-3'/5'), 7.76 (d, 2H, *J* = 8.4 Hz, H-2'/6'), 9.55 (brs, 2H, NH₂⁺). ¹³C-NMR (CDCl₃) δ 19.4 (CH(CH₃)₂), 35.3, 40.2, 51.3, 129.4, 129.8, 132.3, 134.7, 195.8 (CO); MS (EI) *m/z*: 254 (*M* - CH₃)⁺, 256 (*M* - CH₃ + 2)⁺, 270.2 (*M* + H)⁺, 272.2 (*M* + H + 2)⁺. IR (KBr, cm⁻¹): 2462 (NH₂⁺), 1684 (CO). Calcd. for C₁₂H₁₇BrClNO (306.63): C 47.00, H 5.59, N 4.57. Found: C 46.74, H 5.52, N 4.59 (Mete *et al.*, 2011).

Refinement

The H atoms of the NH₂ group, HN1 and HN2, were located in a difference map and refined with a distance restraint of N—H = 0.86 (1) Å. Their displacement parameters were calculated as $U_{iso} = 1.2U_{eq}(N1)$. The other H atoms were positioned

geometrically with C—H = 0.93 (aromatic), 0.96 (methyl), 0.97 (methylene) and 0.98 Å (methine), and constrained to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C)$ or $U_{iso}(H) = 1.5U_{eq}(methyl C)$.

Figures

Fig. 1. The title compound with displacement ellipsoids for non-H atoms shown at the 30% probability level.

Fig. 2. The packing and hydrogen bonding of the title salt viewed down the c axis. H atoms not involved in hydrogen bonds are omitted for the sake of clarity.

N-[2-(4-Bromobenzoyl)ethyl]isopropylaminium chloride

Crystal data

$C_{12}H_{17}BrNO^+ \cdot Cl^-$	$D_{\rm x} = 1.461 {\rm Mg m}^{-3}$
$M_r = 306.62$	Melting point: 447 K
Tetragonal, $P4_2/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 4bc	Cell parameters from 3888 reflections
a = 19.7122 (4) Å	$\theta = 2.9 - 26.4^{\circ}$
c = 7.1738 (2) Å	$\mu = 3.12 \text{ mm}^{-1}$
$V = 2787.53 (11) \text{ Å}^3$	T = 294 K
Z = 8	Block, white
F(000) = 1248	$0.15\times0.13\times0.11~mm$

Data collection

Rigaku R-AXIS RAPID-S diffractometer	2836 independent reflections
Radiation source: Sealed Tube	1617 reflections with $I > 2\sigma(I)$
Graphite Monochromator	$R_{\rm int} = 0.151$
Detector resolution: 10.0000 pixels mm ⁻¹	$\theta_{\text{max}} = 26.4^{\circ}, \ \theta_{\text{min}} = 2.9^{\circ}$
dtprofit.ref scans	$h = -24 \rightarrow 24$
Absorption correction: multi-scan (Blessing, 1995)	$k = -24 \rightarrow 24$
$T_{\min} = 0.632, \ T_{\max} = 0.709$	$l = -8 \rightarrow 8$
50060 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.076$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.181$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.07	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0581P)^{2} + 4.3122P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
2836 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
153 parameters	$\Delta \rho_{max} = 0.67 \text{ e } \text{\AA}^{-3}$
2 restraints	$\Delta \rho_{min} = -0.81 \text{ e } \text{\AA}^{-3}$
0 constraints	

actional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)	

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	0.66757 (4)	0.19433 (5)	-0.04514 (15)	0.1156 (4)
01	0.5235 (2)	0.0463 (2)	0.7192 (7)	0.0850 (17)
N1	0.6128 (2)	-0.1377 (2)	0.8767 (7)	0.0540 (17)
C1	0.6340 (3)	0.0359 (3)	0.3195 (9)	0.065 (2)
C2	0.6561 (3)	0.0740 (3)	0.1698 (10)	0.073 (3)
C3	0.6384 (3)	0.1411 (3)	0.1604 (10)	0.069 (2)
C4	0.5995 (3)	0.1707 (3)	0.2962 (10)	0.074 (3)
C5	0.5762 (3)	0.1323 (3)	0.4438 (9)	0.067 (2)
C6	0.5940 (3)	0.0644 (3)	0.4585 (8)	0.057 (2)
C7	0.5686 (3)	0.0245 (3)	0.6205 (9)	0.061 (2)
C8	0.5994 (3)	-0.0435 (3)	0.6592 (8)	0.063 (2)
C9	0.5742 (3)	-0.0744 (3)	0.8392 (9)	0.061 (2)
C10	0.5984 (3)	-0.1725 (3)	1.0610 (8)	0.0583 (19)
C11	0.6462 (3)	-0.2324 (3)	1.0768 (9)	0.070 (2)
C12	0.5251 (3)	-0.1928 (3)	1.0763 (8)	0.069 (2)
Cl1	0.75617 (8)	-0.07602 (8)	0.9322 (2)	0.0682 (6)
H1	0.64610	-0.00960	0.32750	0.0780*
HN1	0.604 (4)	-0.168 (3)	0.794 (9)	0.1390*
HN2	0.6548 (13)	-0.126 (4)	0.877 (12)	0.1390*
H2	0.68250	0.05440	0.07690	0.0870*
H4	0.58890	0.21660	0.28900	0.0890*
H5	0.54840	0.15200	0.53360	0.0800*
H8A	0.64830	-0.03880	0.66520	0.0760*
H8B	0.58880	-0.07390	0.55690	0.0760*
H9A	0.58050	-0.04270	0.94100	0.0730*
H9B	0.52610	-0.08460	0.82920	0.0730*
H10	0.60870	-0.14060	1.16200	0.0700*
H11A	0.63550	-0.26500	0.98190	0.1050*

supplementary materials

H11B	0.64120	-0.25290	1.19730	0.1050*
H11C	0.69210	-0.21710	1.06120	0.1050*
H12A	0.51320	-0.22120	0.97260	0.1030*
H12B	0.49710	-0.15300	1.07580	0.1030*
H12C	0.51820	-0.21730	1.19040	0.1030*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0916 (6)	0.1139 (7)	0.1414 (9)	0.0018 (4)	0.0247 (5)	0.0597 (6)
01	0.091 (3)	0.074 (3)	0.090 (3)	0.020 (2)	0.021 (3)	0.008 (3)
N1	0.055 (3)	0.049 (3)	0.058 (3)	0.002 (2)	-0.001 (2)	0.007 (2)
C1	0.061 (4)	0.055 (4)	0.080 (4)	0.009 (3)	-0.003 (3)	0.007 (3)
C2	0.067 (4)	0.067 (4)	0.084 (5)	0.003 (3)	0.006 (3)	0.011 (4)
C3	0.049 (3)	0.070 (4)	0.087 (5)	-0.006 (3)	-0.004 (3)	0.023 (4)
C4	0.075 (4)	0.056 (4)	0.090 (5)	0.002 (3)	-0.008 (4)	0.013 (4)
C5	0.072 (4)	0.051 (3)	0.077 (4)	0.005 (3)	-0.003 (3)	0.000 (3)
C6	0.062 (4)	0.050 (3)	0.060 (4)	-0.002 (3)	-0.010 (3)	0.004 (3)
C7	0.056 (4)	0.060 (4)	0.068 (4)	0.000 (3)	-0.004 (3)	-0.001 (3)
C8	0.064 (4)	0.061 (4)	0.065 (4)	0.006 (3)	0.001 (3)	0.009 (3)
C9	0.060 (4)	0.053 (3)	0.070 (4)	0.003 (3)	-0.003 (3)	0.005 (3)
C10	0.068 (4)	0.056 (3)	0.051 (3)	-0.003 (3)	-0.004 (3)	0.005 (3)
C11	0.070 (4)	0.072 (4)	0.067 (4)	0.009 (3)	-0.008 (3)	0.013 (3)
C12	0.067 (4)	0.075 (4)	0.064 (4)	-0.004 (3)	0.008 (3)	0.006 (3)
Cl1	0.0608 (9)	0.0857 (11)	0.0580 (9)	-0.0135 (7)	0.0045 (7)	-0.0045 (8)

Geometric parameters (Å, °)

Br1—C3	1.899 (7)	C10-C11	1.515 (8)
O1—C7	1.215 (7)	C1—H1	0.9300
N1—C9	1.486 (7)	С2—Н2	0.9300
N1—C10	1.516 (8)	C4—H4	0.9300
N1—HN2	0.86 (4)	С5—Н5	0.9300
N1—HN1	0.86 (6)	С8—Н8А	0.9700
C1—C2	1.381 (9)	C8—H8B	0.9700
C1—C6	1.390 (9)	С9—Н9А	0.9700
C2—C3	1.370 (8)	С9—Н9В	0.9700
C3—C4	1.370 (9)	C10—H10	0.9800
C4—C5	1.380 (9)	C11—H11A	0.9600
C5—C6	1.388 (8)	C11—H11B	0.9600
C6—C7	1.490 (9)	C11—H11C	0.9600
С7—С8	1.498 (8)	C12—H12A	0.9600
C8—C9	1.512 (9)	C12—H12B	0.9600
C10—C12	1.503 (8)	C12—H12C	0.9600
C9—N1—C10	116.2 (4)	C5—C4—H4	120.00
HN2—N1—HN1	113 (8)	С4—С5—Н5	120.00
C9—N1—HN1	111 (5)	С6—С5—Н5	120.00
C10—N1—HN2	107 (6)	С7—С8—Н8А	109.00

C9—N1—HN2	106 (5)	С7—С8—Н8В	109.00
C10—N1—HN1	105 (4)	С9—С8—Н8А	109.00
C2—C1—C6	121.1 (6)	С9—С8—Н8В	109.00
C1—C2—C3	118.9 (6)	H8A—C8—H8B	108.00
Br1—C3—C2	119.7 (5)	N1—C9—H9A	110.00
Br1—C3—C4	119.1 (5)	N1—C9—H9B	110.00
C2—C3—C4	121.3 (6)	С8—С9—Н9А	110.00
C3—C4—C5	119.9 (6)	С8—С9—Н9В	110.00
C4—C5—C6	120.2 (6)	Н9А—С9—Н9В	108.00
C5—C6—C7	118.9 (5)	N1—C10—H10	108.00
C1—C6—C7	122.5 (5)	C11—C10—H10	108.00
C1—C6—C5	118.6 (5)	С12—С10—Н10	108.00
O1—C7—C6	120.9 (5)	C10-C11-H11A	109.00
C6—C7—C8	118.7 (5)	C10-C11-H11B	109.00
O1—C7—C8	120.3 (6)	C10-C11-H11C	109.00
С7—С8—С9	112.7 (5)	H11A—C11—H11B	110.00
N1—C9—C8	109.0 (5)	H11A—C11—H11C	110.00
N1—C10—C12	111.4 (5)	H11B—C11—H11C	110.00
C11—C10—C12	112.6 (5)	C10-C12-H12A	109.00
N1—C10—C11	107.5 (5)	C10-C12-H12B	110.00
C2—C1—H1	119.00	C10-C12-H12C	109.00
С6—С1—Н1	119.00	H12A—C12—H12B	109.00
С1—С2—Н2	121.00	H12A—C12—H12C	109.00
С3—С2—Н2	121.00	H12B—C12—H12C	109.00
C3—C4—H4	120.00		
C9—N1—C10—C11	-176.0 (5)	C3—C4—C5—C6	2.3 (9)
C9—N1—C10—C12	60.1 (6)	C4—C5—C6—C1	-1.7 (9)
C10—N1—C9—C8	174.9 (4)	C4—C5—C6—C7	179.4 (6)
C6—C1—C2—C3	0.5 (9)	C5—C6—C7—C8	-166.9 (5)
C2—C1—C6—C5	0.3 (9)	C1—C6—C7—O1	-165.4 (6)
C2—C1—C6—C7	179.2 (6)	C1—C6—C7—C8	14.2 (9)
C1—C2—C3—C4	0.1 (10)	C5—C6—C7—O1	13.5 (9)
C1—C2—C3—Br1	-179.5 (5)	01—C7—C8—C9	-6.8 (8)
C2—C3—C4—C5	-1.4 (10)	C6—C7—C8—C9	173.6 (5)
Br1—C3—C4—C5	178.1 (5)	C7—C8—C9—N1	-173.8 (5)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the benzene ring.				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—HN2…Cl1	0.86 (4)	2.26 (4)	3.102 (4)	166 (5)
N1—HN1···Cl1 ⁱ	0.86 (6)	2.27 (6)	3.133 (5)	177 (9)
C12—H12B···O1 ⁱⁱ	0.96	2.60	3.378 (7)	139
C9—H9B…Cg1 ⁱⁱⁱ	0.97	3.00	3.943 (6)	164
~				

Symmetry codes: (i) -y+1/2, x-1, -z+3/2; (ii) -x+1, -y, -z+2; (iii) -x+1, -y, -z+1.

Fig. 2